Towers of Function Fields over Non-prime Finite Fields

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Towers of Function Fields over Non-prime Finite Fields

Over all non-prime finite fields, we construct some recursive towers of function fields with many rational places. Thus we obtain a substantial improvement on all known lower bounds for Ihara’s quantity A(`), for ` = p with p prime and n > 3 odd. A modular interpretation of the towers is given as well.

متن کامل

Galois Towers over Non-prime Finite Fields

In this paper we construct Galois towers with good asymptotic properties over any nonprime finite field F`; i.e., we construct sequences of function fields N = (N1 ⊂ N2 ⊂ · · · ) over F` of increasing genus, such that all the extensions Ni/N1 are Galois extensions and the number of rational places of these function fields grows linearly with the genus. The limits of the towers satisfy the same ...

متن کامل

Structure of finite wavelet frames over prime fields

‎This article presents a systematic study for structure of finite wavelet frames‎ ‎over prime fields‎. ‎Let $p$ be a positive prime integer and $mathbb{W}_p$‎ ‎be the finite wavelet group over the prime field $mathbb{Z}_p$‎. ‎We study theoretical frame aspects of finite wavelet systems generated by‎ ‎subgroups of the finite wavelet group $mathbb{W}_p$.

متن کامل

On the Asymptotic Behaviour of Some Towers of Function Fields over Finite Fields

Let F Fl be an algebraic function field of one variable, whose constant field is the finite field of cardinality l. Weil's theorem states that the number N=N(F ) of places of degree one of F Fl satisfies the estimate N l+1+2g l , (0.1) where g= g(F ) denotes the genus of F. It is well known that for g large with respect to l, the Weil bound (0.1) is not optimal; see [5, 9]. Drinfeld and Vladut ...

متن کامل

On the Invariants of Towers of Function Fields over Finite Fields

We consider a tower of function fields F = (Fn)n≥0 over a finite field Fq and a finite extension E/F0 such that the sequence E := E ·F = (EFn)n≥0 is a tower over the field Fq. Then we deal with the following: What can we say about the invariants of E ; i.e., the asymptotic number of the places of degree r for any r ≥ 1 in E , if those of F are known? We give a method based on explicit extension...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Moscow Mathematical Journal

سال: 2015

ISSN: 1609-3321,1609-4514

DOI: 10.17323/1609-4514-2015-15-1-1-29